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Abstract

Background: Previous studies have focused on both ventral striatum (VS) and dorsal striatum (DS) in characterizing
dopaminergic deficits in addiction. Animal studies suggest VS and DS dysfunction each in association with impulsive and
compulsive cocaine use during early and later stages of addiction. However, few human studies have aimed to distinguish the
roles of VS and DS dysfunction in cocaine misuse.

Methods: We examined VS and DS resting-state functional connectivity (rsFC) of 122 recently abstinent cocaine-dependent
individuals (CDs) and 122 healthy controls (HCs) in 2 separate cohorts. We followed published routines in imaging data
analyses and evaluated the results at a corrected threshold with age, sex, years of drinking, and smoking accounted for.
Results: CDs relative to HCs showed higher VS rsFC with the left inferior frontal cortex (IFC), lower VS rsFC with the
hippocampus, and higher DS rsFC with the left orbitofrontal cortex. Region-of-interest analyses confirmed the findings in the
2 cohorts examined separately. In CDs, VS-left IFC and VS-hippocampus connectivity was positively and negatively correlated
with average monthly cocaine use in the prior year, respectively. In the second cohort where participants were assessed
with the Barratt Impulsivity Scale (BIS-11), VS-left IFC and VS-hippocampus connectivity was also positively and negatively
correlated with BIS-11 scores in CDs. In contrast, DS-orbitofrontal cortex connectivity did not relate significantly to cocaine
use metrics or BIS-11 scores.

Conclusion: These findings associate VS rsFC with impulsivity and the severity of recent cocaine use. How DS connectivity
partakes in cocaine misuse remains to be investigated.

Keywords: Cocaine addiction, brain imaging, resting-state functional connectivity, striatum, impulsivity

Received: December 8, 2021; Revised: February 3, 2022; Accepted: March 1, 2022

© The Author(s) 2023. Published by Oxford University Press on behalf of CINP.

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://
creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, 1
provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

International Journal of Neuropsychopharmacology (2023) XX(XX): 1-12

€20z Jequisydeg | uo 1senb Aq y012yz./6100eAd/dBli/c601 01 /10p/801E-80URADE/dUll/WO0 dNO"0jWepEeDE//:SdRY WOl papeojumod


https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://orcid.org/0000-0002-4196-8646
https://orcid.org/0000-0002-9393-1212
mailto:sheng.zhang@yale.edu?subject=
https://doi.org/10.1093/ijnp/pyac019

2 | International Journal of Neuropsychopharmacology, 2023

Significance Statement

Striatal circuit dysfunction is central to the pathophysiology of drug addiction. We aimed to contrast the roles of resting-state
functional connectivity (rsFC) of ventral (VS) and dorsal (DS) striatum in cocaine misuse. In 2 cohorts of a total of 122 cocaine-
dependent individuals (CDs) vs 122 healthy controls (HCs), we showed higher VS rsFC with the left inferior frontal cortex
(IFC), lower VS rsFC with the hippocampus, and higher DS rsFC with the left orbitofrontal cortex (OFC). In CDs, VS-left IFC and
VS-hippocampus connectivity was positively and negatively correlated with average monthly cocaine use, respectively. VS-left
IFC and VS-hippocampus connectivity was also positively and negatively correlated with impulsivity in CDs, respectively. In con-
trast, DS-OFC connectivity did not relate significantly to the severity of cocaine use or impulsivity. These findings associated VS
but not DS rsFC with impulsivity and the severity of recent cocaine use in abstinent chronic cocaine users.

Introduction

Cocaine addiction is a chronic, relapsing illness characterized by
motivation dysfunction. It is posited that cocaine-dependent in-
dividuals respond less to natural reinforcers and engage instead
in habitual drug-seeking and consumption (Knackstedt et al.,
2014). Extensive evidence implicates the dopaminergic circuits
in uncontrolled cocaine use (Volkow et al., 2011; Cachope and
Cheer, 2014). Both the ventral striatum (VS) and dorsal striatum
(DS) receive dopaminergic inputs from the ventral tegmental
area and substantia nigra, pars compacta (Alexander et al,
1986), and support reward and habit learning and other behav-
iors associated with drug abuse (Volkow et al., 2011; Ersche et al.,
2020; Ersche et al., 2021; Lim et al., 2021).

Imaging studies have characterized dopaminergic deficits
(Volkow et al., 2006; Wong et al., 2006; Martinez et al., 2007;
Volkow et al.,, 2011) and described altered VS and DS activation
during cognitive challenges in individuals with drug addic-
tion, including cocaine addiction (Cisler et al., 2013; Ding and
Lee, 2013; Konova et al., 2013; Vaquero et al.,, 2017; Zhang and
Li, 2018). For instance, cocaine-dependent individuals (CDs)
relative to healthy controls (HCs) exhibited higher VS activa-
tion during wins vs losses in a lottery task (Vaquero et al., 2017).
Using positron emission tomography, studies showed that dopa-
mine in the DS but not in the VS was positively correlated with
self-reports of cocaine craving in CDs (Volkow et al., 2006; Wong
et al., 2006). Another study observed higher striatal-frontal and
lower striatal-insula and cingulate resting-state functional con-
nectivity (rsFC) in non-treatment-seeking CDs compared with
HCs. Further, striatal-frontal connectivity strength was posi-
tively correlated with the severity of recent cocaine use and ele-
vated trait impulsivity in CDs (Hu et al., 2015). Besides cocaine
addiction, a more recent work reported higher DS-orbitofrontal
cortex (OFC) rsFC in multiple substance users with high vs low
misuse severity (Oh et al., 2020). Higher medial OFC activity
was accompanied by stronger DS connectivity during negative
emotional processing as well as rsFC in individuals with ma-
rijuana dependence (Zimmermann et al., 2018). These studies
suggest both VS and DS dysfunction in association with impul-
sive and compulsive cocaine use during early and later stages
of addiction.

A substantial number of studies provided evidence in sup-
port of differentiable roles of the VS and DS in cocaine misuse.
Whereas the VS is involved in salience signaling and initial
learning of goal-directed behavior (Atallah et al., 2014), the DS
mediates the transition to habitual, stimulus-controlled be-
havior (Smith and Graybiel, 2013). Thus, previous studies have
posited a role of the VS and DS during the early and later stages
of addiction when individuals engage in impulsive and compul-
sive drug use, respectively. The hypothesis has been investigated
mostly in animals engaged in reward-related behavior and/or
drug use (McClure et al., 2004; Dalley et al., 2007; Behan et al.,

2015; Everitt and Robbins, 2016; Pascoli et al., 2018; Luscher et al.,
2020). For instance, impulsive animals showed markedly re-
duced fallypride binding after haloperidol vs saline treatment—
suggesting greater reduction in dopamine D, ,, receptors—within
the VS but not DS (Mukherjee et al., 1999), with the reduction of
VS D,, receptor binding correlated with impulsivity on a 5-choice
serial reaction time task (Dalley et al., 2007). Other studies im-
plicated the DS in the progressesion from goal-directed to ha-
bitual cue-induced drug taking (Everitt and Robbins, 2005, 2016),
a shift partly independent from impulsivity-driven drug use
(Murray et al., 2014). Cue-evoked dopamine release was ob-
served in the DS when substance use became compulsive (Ito
et al., 2002), and dopamine receptor blockade in the DS but not
VS reduced cocaine-seeking behavior (Vanderschuren et al,
2005). The DS mediates compulsive drug seeking, and the as-
sociation between DS dopaminergic activity and cue-induced
craving may reflect the automatized nature of craving in cocaine
addiction (White, 1989; Tiffany, 1990; Porrino et al., 2004; Sinha
et al.,, 2005; Vanderschuren et al., 2005). These findings have sug-
gested different roles of VS and DS circuit dysfunction in the
transition from impulsive to compulsive drug use. Other studies
contrasted VS and DS circuit dysfunction in cannabis misuse
(Zhou et al., 2018), internet gaming addiction (Dong et al., 2021),
and obesity (Contreras-Rodriguez et al., 2017). Indeed, shifts in
VS-DS function and dysfunction have recently been examined
in humans with cocaine (Hu et al., 2015), cannabis (Zhou et al.,
2018), and internet gaming addiction (Dong et al., 2021) as well
as those with obesity (Contreras-Rodriguez et al., 2017).

RsFC characterizes the functional architecture of the brain
(Fox and Raichle, 2007; Gu et al., 2010; Hu et al., 2015; Zhang and
Li, 2018). Numerous studies have described altered cortical and
subcortical rsFC in addiction (Gu et al., 2010; Kelly et al., 2011;
Sutherland et al., 2012; Zhang et al., 2016, 2017; Gawrysiak et al.,
2017; Zhang and Li, 2018). However, other than Hu et al. (2015), as
discussed further later, no studies to our knowledge have exam-
ined VS/DS rsEC in cocaine addiction. Here, we investigated the
rsFC of the VS and DS in CDs compared with HCs in a relatively
large sample of participants. We characterized the relationship
between the connectivity measures and cocaine use variables as
well as an impulsivity trait, with the goal to distinguish VS and
DS dysfunction in cocaine misuse. On the basis of the literature,
we hypothesized that VS and DS rsFC were each associated with
impulsivity and the severity of recent cocaine use.

MATERIALS AND METHODS

Participants, Informed Consent, and Assessment

A total 122 recently abstinent participants with cocaine de-
pendence (CDs, 95 men) and 122 age- and gender-matched
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healthy control participants (HCs, 85 men) took part in the study
(Table 1). The great majority of CDs (120 out of 122) smoked co-
caine. CDs and HCs were recruited and studied with similar
protocols over 2 study periods. The first (66 CDs and 66 HCs) and
second (56 CDs and 56 HCs) cohorts were each scanned with a
single- and multi-band magnetic resonance imaging (MRI) se-
quence in a protocol that involved resting-state before different
task-based functional MRI (fMRI) scans.

CDs met the criteria for current cocaine dependence as diag-
nosed by the Structured Clinical Interview for DSM-IV (First
et al.,, 1995). Recent cocaine use was confirmed by urine toxi-
cology screens. Participants were drug-free while staying in an
inpatient unit for 7 to 10 days prior to the current fMRI study.
Smokers were allowed to smoke if they so wished until the fMRI
scan to minimize the effect of nicotine craving in the current
study and per our scan routines. All participants were physic-
ally healthy with no major medical illnesses or current use of
prescription medications. None reported having a history of
head injury or neurological illness. Other exclusion criteria in-
cluded dependence on another psychoactive substance (except
nicotine) and current or past history of psychotic disorders.
The Human Investigation committee at Yale University School
of Medicine approved all study procedures, and all participants
signed an informed consent prior to the study.

For CDs, the following inclusion criteria were required for
eligibility: (1) between 18 and 55 years old; (2) able to read and
write; (3) meet DSM-IV criteria for cocaine dependence; report
current cocaine use of once or more a week; confirmation of
recent cocaine use in urine toxicology test during intake as-
sessments and prior to admission to the Connecticut Mental
Health Center; and (4) physically healthy with no major medical
illnesses, current use of prescription medications, or history of
head injury or any neurological illness. Other exclusion criteria
included (1) current or past history of psychotic disorders; (2)
current major depressive or anxiety disorders; (3) abuse or de-
pendence on another substance, except nicotine and caffeine;
(4) current use of any psychoactive drugs, including anxiolytics
and antidepressants; (5) foreign ferromagnetic objects in the
body or other MR contraindications (e.g., claustrophobia); and
(6) pregnancy or lactation (women only).

CDs were evaluated for history of and recent cocaine use,
with the average number of days of cocaine use in the prior
month, average total monthly amount of cocaine use in the prior
year, and years of cocaine use documented. Cocaine craving was
assessed with the Cocaine Craving Questionnaire, brief version
(CCQ-Brief), for CDs every 2 to 3 days during the inpatient stay
(Sussner et al., 2006). The CCQ-Brief is a 10-item questionnaire
abbreviated from the CCQ-Now (Tiffany et al., 1993). CCQ-Brief,
CCQ-Now, and other measures were highly correlated in craving
assessment (Sussner et al., 2006). Each item was rated on a
scale from 1 to 7, with a higher total score (ranging from 10 to
70) indicating greater craving.

The Barratt Impulsivity Scale (BIS-11) (Patton et al., 1995) was
administered to the multi-band cohort (see next section) of 56
CDs and 56 HCs. The BIS-11 total score and attention, motor, and
non-planning subscale scores were used in regression analyses.

Imaging Protocol and Data Preprocessing

One 10-minute resting-state fMRI scan was obtained for both
CDs and HCs with eyes closed but awake. Brain images of 66
CDs and 66 HCs were collected using single-band imaging
with a 3-Tesla MR scanner (Siemens Trio, Erlangen, Germany)
as in our previous study (Zhang and Li, 2018). Brain images of

Table 1. Demographics and Clinical Measures of the Participants

P value

SB vs MB

CDs vs HCs

HCs

CDs

MB

(n

Cocaine and Striatal Connectivity

CDs HCs

=56)

66)

SB (n

=122)

All (n

=56)

MB (n

=66)

SB (n

=122)

All(n

=56)

MB (n

=66)

SB (n

=122)

All (n

<.001

.004

297
<.001
<.001

74
36"

13
.26

.18
197

44.8+7.2
42/14

41.4+7.3 45.2+7.1 41.7+8.8 39.1+9.2
85/37 43/23

49/17

43.1+7.4
95/27

Age,y

247
<.001

N/A
N/A

46/10
26.9+9.7

Gender (M/F)

.78

26.1+10.5 .90

14.4+9.1
N/A
N/A

19.7+11.4

14.0+7.2

19.9+10.6
31.6+17.2
29.9+29.3

Years of drinking

CCQ score

N/A

N/A
N/A

N/A
N/A

N/A
N/A

N/A

38.6+17.2
26.7+27.4

23.8+10.4
32.5+30.9

.28

N/A

N/A

Monthly cocaine use (average,

prior year), g
Cocaine use (prior month), d

Cocaine use, y

N/A
N/A
N/A
N/A
N/A

22

N/A
N/A

N/A
N/A
N/A
N/A
N/A

N/A
N/A
N/A
N/A
N/A
N/A

N/A
N/A
54.9+8.4

N/A
N/A

N/A

N/A
N/A
N/A
N/A
N/A

19.0+7.8
N/A

17.1+£9.1

18.0+8.6

.012
N/A
N/A
N/A
N/A

16.3+9.3

20.1+7.2

N/A

18.4+8.4
N/A
N/A
N/A

<.001

65.6+10.9
16.2+3.8

BIS-11 total score

.002

13.2+2.9

N/A
N/A
N/A

N/A
N/A
N/A

Attention subscore
Motor subscore

43
<.001

20.0+3.4

20.5+4.5

N/A

N/A

21.7+4.2

28.0+£6.8

N/A

Nonplanning subscore

Abbreviations: CCQ, Cocaine Craving Questionnaire; All, single-band + multi-band sample; SB, single-band sample; MB, multi-band sample.

Values are mean+SD; P values are based on 2-tailed 2-sample t test except for *y? test.
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the second cohort (56 CDs and 56 HCs) were collected using
multiband imaging with a 3-Tesla Siemens Trio scanner. Data
were analyzed with Statistical Parametric Mapping (SPMS,
Wellcome Department of Imaging Neuroscience, University
College London, UK), and standard preprocessing and additional
preprocessing of rsFC analysis was performed. Please see details
in the supplement.

Head Motion

As extensively investigated in Van Dijk et al. (2012), micro head
motion (>0.1 mm) represents an important source of spurious
correlations in rsFC analysis (Van Dijk et al., 2012). Therefore,
we applied “scrubbing” as in previous studies (Smyser et al,,
2010; Power et al., 2012; Tomasi and Volkow, 2014) to remove
time points affected by head motions. Briefly, for every time
point t, we computed the framewise displacement given by
FD (t) = |Adx (t)| + [Ady (t)| + [Adz (1) + |Aa (t)] + [AB (1) + |Ay (1) ],
where (d,,d,, d,) and (a, f, v) are the translational and rotational
movements, respectively (Power et al., 2012). The second head
movement metric was the root mean square variance (DVARS)
of the differences in % blood oxygen level dependent (BOLD) in-
tensity I(t) between consecutive time points across brain voxels,
computed as follows: VARS (t) = /(|I(t) — I(t — 1)[?), where the
brackets indicate the mean across brain voxels. Finally, to com-
pute each participant’s correlation map, we removed time points
with FD(t)>0.5 mm or DVARS(t) >0.5% (Power et al., 2012; Tomasi
and Volkow, 2014). On average, 1% of the time points were re-
moved across participants.

Seed-Based Correlation and Group Analyses

We used the same VS mask as in our previous studies (Li et al.,
2014; Zhang and Li, 2018). The DS mask was combined of the
caudate, putamen, and pallidum templates from the Anatomical
Automatic Labeling atlas (Tzourio-Mazoyer et al., 2002). A small
number of voxels that overlapped between the 2 masks were
removed (Fig. 1).

The BOLD time courses were averaged spatially for both the
VS and DS mask. For individual participants, we computed the
correlation coefficient between the averaged time course of each
seed region and the time courses of all other brain voxels. To
assess and compare the rsFC, we converted these image maps,

which were not normally distributed, to z score maps by Fisher’s
z transform (Jenkins and Watts, 1968; Berry and Mielke, 2000):

z = 0.5log, [%] .The Z maps were used in group random-effects
analyses. We performed a 1-sample t test on the Z maps of both
VS and DS for CDs and HCs and 2-sample t test with age, sex,
and years of drinking as covariates to compare the 2 groups.

In region of interest (ROI) analysis, we used MarsBaR (http://
marsbar.sourceforge.net/) to derive for each individual partici-
pant the functional connectivity z scores for the ROIs. Functional
ROIs were defined based on “activated” clusters obtained from
whole-brain analysis in the comparison of CDs and HCs and in
the correlation with clinical metrics. All findings were presented
in Montreal Neurological Institute (MNI) coordinates and brain
regions identified with an atlas (Duvernoy, 1999).

In addition, we examined how well these rsFC features distin-
guished CDs from HCs. The accuracy was assessed using receiver
operating characteristic (ROC) analysis, with the area under the
curve (AUC) to indicate classification accuracy (Macmillan and
Creelman, 2005; Zou et al., 2007). The ROC curve was created by
plotting the true positive rate (sensitivity) against the false posi-
tive rate (1 - specificity) at various thresholds to distinguish CDs
from HCs. Thus, the AUC considers both sensitivity and speci-
ficity and is a threshold-independent measure of classification
performance.

RESULTS

Demographics and Clinical Measures

The demographic and clinical characteristics of the partici-
pants as well as the statistics are shown in Table 1. CDs and HCs
did not differ in age, sex composition, or years of drinking in
either single-band or multi-band sample or in the 2 samples
combined. Both CDs and HCs were significantly older and had
more years of drinking in the multi-band relative to single-band
group. Further, CDs averaged 31.6+17.2 in CCQ score across all
assessments. Multi-band vs single-band CDs showed a higher
CCQ score but fewer years of cocaine use. The 2 CD groups did
not differ in average monthly cocaine use in the past year or
days of cocaine use in the past week.

Participants in the multi-band sample were assessed with
the BIS-11, and CDs relative to HCs showed higher BIS total
score, inattention, and non-planning but not motor sub-score.

Figure 1. Seed regions: ventral (VS, green) and dorsal (DS, yellow) striatum are shown on axial (z=-22 to +10) and coronal (y=-10 to +26) sections of the brain.
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Examined at voxel P<.05 corrected for family-wise error on the
basis of Gaussian random field theory, the results of a 1-sample
t test of VS and DS rsFC with the whole brain are shown in sup-
plementary Figure 1 for both CDs and HCs.

In a 2-sample t test with age, sex, and years of drinking as
covariates, CDs relative to HCs showed higher VS rsFC with the
left inferior frontal cortex (IFC), in the area of the inferior frontal
sulcus, and lower VS rsFC with bilateral but predominantly right
hippocampus at voxel P<.001 uncorrected and cluster-level
P<.05 family-wise error. At the same threshold, CDs relative to
HCs showed higher DS rsFC with the left lateral OFC in the area
of the lateral orbital gyrus. These findings are shown in Figure 2
and the clusters are summarized in Table 2.

We compared CDs and HCs in the connectivity z scores of
the ROIs (left IFC, bilateral hippocampus, and left OFC) separ-
ately for the single- and multi-band cohort with 2-sample t tests
with age, sex, and years of drinking as covariates. The group
differences were confirmed in both cohorts (supplementary
Table 1). Further, CDs (mean+SD=16.6+11.6) and HC (2.9+7.0)
showed significant difference in years of smoking (P<.001), and
we included years of smoking as an additional covariate and
re-examined group differences in rsFC for the multi-band data.
The findings were largely identical (supplementary Table 1).

The ROC analysis showed that VS rsFC with the left IFC
(AUC=0.70) and with the hippocampus (AUC=0.71) were slightly
more accurate than DS rsFC with the left OFC (AUC=0.67) in
distinguishing the 2 groups (Figure 3).

Relationship of VS/DS rsFC to Clinical Characteristics

We evaluated the relationship between the rsFC and cocaine use
variables—including CCQ score, average days of cocaine use in
the prior month, average total monthly amount of cocaine use,
and years of cocaine use—and age, sex, and years of drinking
as covariates. Thus, with 3 ROIs and 4 cocaine use measures
tested, the results of linear regression were evaluated with a
corrected P=.05/(4 x 3)=.0042. Across all 122 CDs, VS-left IFC and
VS-hippocampus rsFC (z score) were each positively and nega-
tively correlated with monthly cocaine use (r=0.33, P=.00019;
r=-0.35, P=.00007), respectively. In contrast, DS-left OFC rsFC
was not correlated with monthly cocaine use or any other co-
caine use measures (all Ps>.20). To demonstrate differences in
the correlation of VS and DS rsFC with monthly cocaine use, we
also computed the rsFC z scores of DS-left IFC, DS-hippocampus,
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and VS-left OFC and compared the slopes of the regressions be-
tween VS and DS rsFCs. The results showed that VS- vs DS-left
IFC (z=2.85, P=.0044) and VS- vs DS-hippocampus rsFC differed
significantly (z=-2.74, P=.0061), but VS- vs DS-left OFC rsFC
(z=-0.7, P=.48) did not differ significantly in the correlation with
monthly cocaine use (Fig. 4).

The finding remained largely the same when the single- and
multi- band participants were examined separately (supple-
mentary Table 2). Participants in the multi-band cohort were
evaluated with BIS-11. CDs showed higher total, inattention, and
non-planning scores but not motor score compared with HCs
(Table 1). Thus, we examined the relationship between VS/DS
rsFC and BIS-11 total, inattention, and non-planning score with
age, sex, and years of drinking as covariate (Fig. 5). Across the
56 CDs, the VS-left IFC rsFC z scores were positively correlated
with BIS inattention (r=0.30, P=.028) and nonplanning (r=0.33,
P=.015) subscores, and the VS-hippocampus rsFC strength was
negatively correlated with BIS total score (r=-0.28, P=.046). All
other VS rsFCs were not correlated with any of the BIS scores (all
Ps>.065). No DS rsFC was correlated with BIS total or subscores
(all Ps>.35).

Discussion

We observed higher VS rsFC with left IFC and lower VS rsFC with
the hippocampus as well as higher DS rsFC with the left OFC
in CDs compared with HCs. These rsFC features distinguished
CDs from HCs with an accuracy of 70%-71%. (VS) and 67% (DS).
The strength of VS but not DS rsFC with left IFC and with hippo-
campus was positively and negatively correlated with the se-
verity of recent cocaine use, respectively. Further, VS but not DS
rsFC with the left IFC and hippocampus were each positively
and negatively associated with impulsivity, respectively. These
findings together support a more prominent role of the VS than
DS circuit dysfunction in reflecting both the severity of cocaine
use and impulsivity in recently abstinent CDs who on average
have been engaged in cocaine use for 18.4 years. We highlight
some of the major findings below.

Altered VS and DS rsFC With the Frontal Cortex in
Cocaine Addiction

The VS showed higher rsFC with the left IFC and the DS showed
higher rsFC with the left OFC in CDs relative to HCs, consistent
with previous findings of elevated striatal frontal cortical

Table 2. Regions Showing Differences in rsFC of VS and DS Between CDs and HCs

Volume Peak voxel MNI coordinate (mm)

mm? z X y

z Side Identified brain region

Vs
CDs>HCs

5805 4.13 -21 41
HCs>CDs

3510 3.91 30 -25
DS
CDs>HCs

3753 4.48 —42 32
HCs>CDs

None

16 L Inferior frontal cortex

-11 R Hippocampus

-2 L Orbitofrontal cortex

Abbreviations: DS, dorsal striatum,; L, left; R, right; VS, ventral striatum.
Voxel P<.001 and cluster-level P<.05, family-wise error.
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Figure 2. Brain regions showing differences between CDs (n=122) and HCs (n=122) in ventral (VS) and dorsal (DS) striatal rsFC, evaluated at voxel P<.001 uncorrected
and cluster P<.05 family-wise error-corrected. Warm and cool voxels each show higher and lower rsFC with the seed region in CDs vs HCs. Brain sections are shown in
neurological orientation: right=right, and the color bars show voxel T values. rsFC, resting state functional connectivity.
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Figure 3. Receiver operating characteristic analysis showed that the VS rsFC with the left IFC (area under the curve or AUC=0.70) and with the hippocampus
(AUC=0.71) were slightly more accurate than DS rsFC with the left OFC (AUC=0.67) in distinguishing CDs and HCs. DS, dorsal striatum; IFC, inferior frontal cortex; OFC,
orbitofrontal cortex; rsFC, resting state functional connectivity; VS, ventral striatum.
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Figure 4. Linear regressions of VS/DS rsFC (z scores) of regions of interest vs average total monthly amount of cocaine use in the prior year, with age, sex, and years of
drinking as covariates, in CDs. (A) VS/DS-left IFC. (B) VS/DS-hippocampus. (C) VS/DS-left OFC. Each data point represents the residual after accounting for age, sex, and
years of drinking. Orange and green each show the data points and regression lines for the VS and DS. Crosses and circles represent participants from the single- and
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connectivity (Hu et al,, 2015; Zhang and Li, 2018). The IFC is
part of the task control circuit disrupted in addiction (Volkow
and Morales, 2015). Aberrant right IFC activation during emo-
tion processing, decision-making, and inhibitory control has
been reported in addicted individuals as well as recreational
cocaine users (Goldstein and Volkow, 2011; Morein-Zamir et al.,
2015; Canterberry et al., 2016; Zhukovsky et al., 2021). Cocaine
relative to neutral cues evoked bilateral IFC activation in CDs
(Tomasi et al., 2015). Reduction in D2 receptor signaling in the
VS led to reduced IFC activity in individuals with addiction,
gambling disorder, or obesity and has been associated with
drug abuse and craving (Volkow and Baler, 2015). Both VS and
right IFC showed positive correlation with craving rating during
self-administration of cocaine in non-treatment-seeking CDs
(Risinger et al., 2005), and both VS and bilateral IFC showed
lower activation during decision-making in CDs who relapsed
vs those who abstained during follow-ups (Stewart et al., 2014).

With an important role in learning, reward coding, and
evaluation, and executive functions (Rolls and Baylis, 1994;
Schoenbaum et al., 2006), the OFC is implicated in cocaine
craving and behavioral disinhibition (Bonson et al., 2002; Burke
et al., 2009; Wilcox et al., 2011; Moreno-Lopez et al., 2017; Zhang
et al., 2020). The OFC receives projections from the ventral teg-
mental area and nucleus accumbens, subcortical targets for
the reinforcing effects of addictive drugs (Walter et al., 2015). In
humans, the OFC has reciprocal connections with many brain

regions that process both primary and secondary rewards (Rolls,
2000). CDs relative to HCs showed greater activation in the right
OFC during performance of the Iowa Gambling Task vs a con-
trol task (Bolla et al., 2003). Studies have also reported higher
bilateral OFC activation in association with worse performance
in controls but better performance in substance-abusing indi-
viduals in a Stroop task (Goldstein et al., 2001). In preclinical
research, the resistance to punishment in cue-induced relapse
was associated with enhanced OFC activity, while chemogenetic
inhibition of the OFC reduced compulsive drug use (Pascoli et al.,
2015). OFC dysfunction during odor discrimination reversal, re-
inforcement devaluation, and delay discounting was observed
in rats undergoing withdrawal from cocaine use (Lucantonio
etal., 2012).

The current findings of altered VS/DS-frontal cortical rsFC
can be considered broadly with this literature. Whereas VS-left
IFC connectivity was associated with impulsivity and the se-
verity of cocaine use, the behavioral implications of these find-
ings remain to be clarified.

Association of VS but Not DS rsFC With Impulsivity
and Severity of Cocaine Use

The VS but not DS rsFC with the left IFC was associated with
impulsivity and the severity of recent cocaine use. The VS has
been consistently implicated in impulsivity (Basar et al., 2010;
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Figure 5. Linear regressions of VS/DS rsFC (z scores) of regions of interest vs BIS-11 total score, attention sub-score, and non-planning sub-score, with age, sex, and
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Burton et al., 2015; Dalley and Robbins, 2017; Ide et al., 2020), and
trait impulsivity was associated with higher gray matter volume
of the left IFC in CDs (Moreno-Lopez et al., 2012). Animal studies
suggested that IFC projections to the VS may drive impulsive
activity (Robbins, 2007; Brewer and Potenza, 2008; Fineberg et al.,
2010). On the other hand, the OFC-DS connectivity appeared
to be instrumental to compulsive drug intake in rodents, as

demonstrated by a loading pattern of intake, psychomotor sen-
sitization, and responses for cocaine under a progressive ratio
schedule of reinforcement (Minogianis et al., 2019). Consistent
with the current finding, individuals abusing a variety of sub-
stances all showed elevated OFC-DS rsFC (Oh et al., 2020). More
broadly, unmedicated patients with obsessive-compulsive dis-
order relative to HCs showed greater OFC-DS rsFC in positive
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correlation with global symptom severity (Beucke et al., 2013).
However, it remains unclear how exactly to characterize com-
pulsive cocaine use in CDs. To the extent that the severity of
compulsive cocaine use can be captured by years of cocaine use
or quantity of cocaine use in the past year, we were not able to
observe a significant relationship between DS rsFC and these
cocaine use metrics.

Hu et al. (2015) examined the rsFC of VS and DS using six
4-mm-radius spherical seeds within the striatum in 56 non-
treatment-seeking CDs and 56 HCs. The authors observed lower
inferior VS-dorsal anterior cingulate and higher DS-dorsolateral
prefrontal cortical connectivity in CDs vs HCs as well as an
interaction effect in hemispherity for superior VS (VSs)-OFC
connectivity. The DS-dorsolateral prefrontal cortical connect-
ivity strength was positively correlated with current cocaine
use and BIS-11 total scores. Further, the difference between in-
ferior VS-dorsal anterior cingulate and VSs-OFC rsFC strength
was positively correlated with DSM-IV-TR “compulsive” drug
use symptoms, as reflected by the number of criterion symp-
toms endorsed other than withdrawal and tolerance. A number
of issues are worth noting in comparing these and the current
results. First, the VSs seed region (center coordinates: +10, 15,
0) seemed to have most voxels within the DS in Hu et al. (2015).
Second, it was not entirely clear whether the symptom severity
metrics truly reflected compulsive drug use in Hu et al. (2015).
One would argue that the symptom score better reflects the
overall severity of cocaine addiction.

Altered VS rsFC With the Hippocampus in Cocaine
Addiction

Compared with HCs, CDs showed lower VS rsFC with the hippo-
campus, consistent with our earlier finding of diminished rsFC
of all 3 VS subregions, as defined by whole-brain connectivity
parcellation, with bilateral hippocampi (Zhang and Li, 2018).
The hippocampus showed higher activation to cocaine cues and
cue-induced cocaine craving (Tomasi et al., 2015; Wang et al.,
2021). Higher hippocampus regional blood flow and rsFC with
the posterior cingulate cortex/precuneus predicted cocaine re-
lapse (Adinoff et al., 2015). Exposure to cocaine cues induced
dopamine release both in the VS and hippocampus in CDs
(Fotros et al., 2013). In rats, repeated cocaine exposure potenti-
ated hippocampal inputs to the VS (Muller et al., 2002; Britt et al.,
2012; Pascoli et al., 2014), and withdrawal from cocaine admin-
istration led to attenuated long-term potentiation in the hippo-
campus-VS circuit (Goto and Grace, 2005). The latter findings
mirror diminished VS-hippocampus connectivity, with greater
diminution in link with the severity of recent cocaine use in our
CDs, who were studied during early abstinence. Together, these
preclinical and clinical studies suggest hippocampus-VS circuit
dysfunction in cocaine addiction.

Limitations

A few limitations need to be considered. First, we documented
years of smoking only for multi-band data, and CDs showed
more years of smoking than HCs. Although we included years
of smoking as a covariate in data analyses, we could not entirely
rule out the effects of cigarette smoking on the current findings.
Second, we did not have a specific measure of compulsory co-
caine use in CDs. Thus, the current findings do not rule out the
role of DS circuit dysfunction in compulsory cocaine consump-
tion. More studies of cocaine use behavior and the psychological
underpinnings of different patterns of cocaine use may help in
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advancing research on this important issue. In particular, lon-
gitudinal studies would provide vital information to document
within-patient shifts of VS and DS dysfunction through the
course of addiction. Third, our CDs were studied during early
abstinence, and the current findings need to be considered as
specific to this patient population. It remains to be seen whether
and to what extent striatal rsFC may vary depending on the cur-
rent state of cocaine use.

Conclusions

In conclusion, we explored rsFC of the VS and DS in cocaine ad-
diction. CDs compared with HCs showed higher VS rsFC with the
IFC and DS rsFC with the OFC as well as lower VS rsFC with the
hippocampus. VS but not DS rsFCs were associated with cocaine
use severity and impulsivity. These findings should be con-
sidered along with previous findings of a shift in activity from
the VS to DS with the progression from impulsive to compulsive
cocaine use (Hu et al., 2015). The findings highlight VS/DS cir-
cuit dysfunction as a neural marker of cocaine addiction and a
more prominent role of VS circuit dysfunction in reflecting im-
pulsivity and the severity of cocaine use.

Supplementary Materials

Supplementary data are available at International Journal of
Neuropsychopharmacology (JNPPY) online.
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